Proposed Regulatory Framework for Pesticide Residues in Food

Workshop on Pesticide Residues Testing

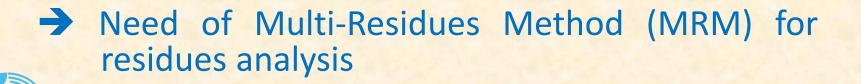
Single-Residue Methods in Pesticide Residues Analysis

9 June 2011

Pesticide Residues Analysis

Single-Residue Method (SRM): analyse the target(s) with its specific method

Method for analysis of pesticide ingredients in formulation and field studies


Thus, single-residue methods usually target individual pesticide and/or its related metabolites

SRM vs MRM

For routine pesticide residues analysis, multiple residues may be targeted in food

- Not desirable (practicable) to analyse target pesticide one by one
- Separated Extraction, clean-up, instrumentation
- Increased cost and time
- Combine individual pesticide residues methods into fewer methods

Examples of MRM

Multi-Residues Method (MRM) for common pesticides

MRM methods are readily available

PAM (I), DFG S19, AOAC, GB, EN, Japan MHLW, Netherlands, etc...

Refer to our first workshop for more information

Grouping up the GC analysis

♦ MRM → GC-amenable?
 ♦ More-volatile, less polar → design sample prep

Detector for traditional GC-based MRM:

- Halogen containing: ECD
- N & P containing: NPD
- P & S containing: FPD
- Mass selective: MSD, ITD

Recent GC-based MRM: QQQ, TOF, Q-TOF, HR-TOF

Grouping up the LC analysis

$\mathbf{ARM} \rightarrow \mathbf{LC} \text{ amenable}$

Less-volatile, more-polar, thermally labile
 design sample prep suited for LC

Detector for traditional LC-based MRM:DAD/UV

- FLD
- MSD

Recent LC-based MRM: QQQ, TOF, Q-TOF, HR-TOF

Single-Residue Methods in Pesticide Residues Analysis

MRM applicable ?

Various GC-/LC- columns available
 Various GC-/LC- detectors available
 Various labs developed MRM extraction protocols: Liquid Extraction, QuEChERs, etc

Still some analytes are not amenable to common GC- / LC- based MRM

Require modifications to existing MRM protocols

MRM vs SRM

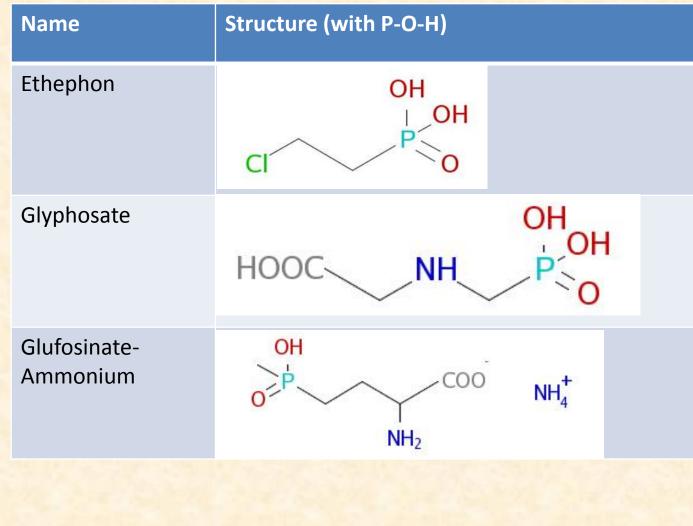
Development of MS detectors for GC- and LCanalysis, lower DL is achievable

Same mass spectrometric instrument can now share the detection requirements of MRM and SRM

Needs for traditional detectors are diminishing in modern single-residue analysis

Single-Residue Methods in Pesticide Residues Analysis

Single-residue Analysis

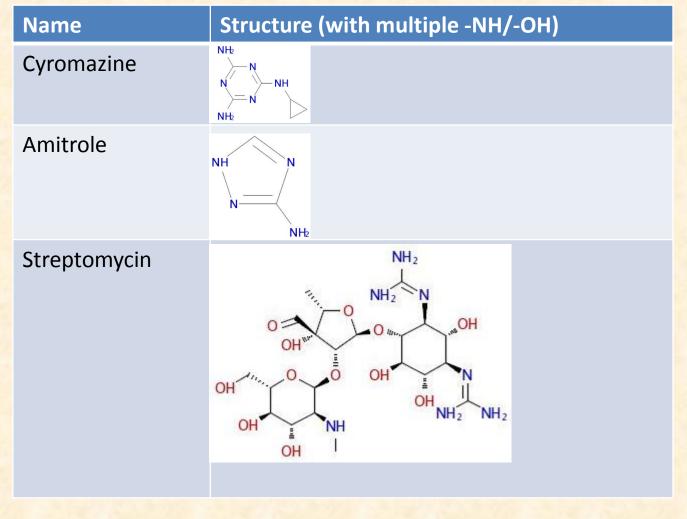

Polar pesticides

Fumigants

Acidic pesticides

Definition involving detection of moieties or conjugates

Single-Residue Methods in Pesticide Residues Analysis


Name	Structure (with P-H, N-H)			
Fosetyl-Al	AI3+ Et O Et O Et O			
Maleic hydrazide				

Name	Structure (with quaternary ammonium)		
Chlormequat	N ⁺ ⊂l		
Mepiquat	N [#]		
Paraquat	H_3C-N $N-CH_3$		
Diquat			

Single-Residue Methods in Pesticide Residues Analysis

Single-Residue Methods in Pesticide Residues Analysis

SRM – Conventional Methods

Name	Single Residue Method in brief	
Ethephon	Soxhlet extract with MeOH, derivatization for GC-FPD	
Glyphosate	Extract with water, clean up by ion exchange column, derivatization for GC-FPD	
Glufosinate- Ammonium	Homogenize with water, clean up by ion exchange column, derivatization for GC-FPD	
Fosetyl-Al	Extract with dilute acid, methylation for GC-FPD	
Maleic hydrazide	Alkaline digestion, distillation with <i>Zn</i> to release hydrazine, detection by UV	
Chlormequat	Methanol extraction, clean up by ion exchange column, alkaline digest to release <i>acetylene</i> , HS-GC-FID analysis	

SRM – Conventional Methods

Name	Single Residue Method in brief			
Mepiquat	HCI-Methanol extraction, demethylation, GLC analysis			
Paraquat	Extract with 5N sulfuric acid, clean-up by anion exchange column, reduction by sodium <i>dithionite</i> , determined by UV-VIS			
Diquat	Reflux with sulfuric acid, clean-up by anion exchange column, reduction by sodium <i>dithionite</i> , determined by UV-VIS			
Cyromazine	Extract with ACN-water (9:1), clean up by C18 Sep-Pak & anion exchange column, analysis by HPLC-UV			
Amitrole	Extract with aqueous ethanol, acetylation, GC-NPD analysis			
Streptomycin	Homogenized with aqueous solution, determined by microbiological method			

SRM – Conventional Methods

Long sample preparation

Detection: FID, NPD, FPD, UV-VIS, microbiological, etc...

Usually requires derivatization of analyte (methylation, demethylation, reduction, etc...)

Single residues methods available, for example from PAM II, BfR, AOAC, etc...

Single-Residue Methods in **Pesticide Residues Analysis**

SRM – Recent Developments

One sample preparation to extract multiple number of polar pesticides

Analysis by LC-MS/MS with optimized chromatographic conditions

New SRM are available freely from EURL and other institutes

Polar Pesticides – Quick Sample Prep

- Weigh sample into centrifuge tube
- Add Internal standard solution
- Add extraction solvent (acidified methanol)
- Shake vigorously for 1 min
- Centrifuge

6

- Filter into vial with syringe filter
- LC-MS/MS analysis

Polar Pesticides – LC-MS/MS

	Analyte	LC Column Example
1	Glyphosate, Ethephon, Glufosinate	Anion Exchange column
2	Fosetyl-Al, Maleic hydrazide, Chlormequat, Mepiquat, Paraquat, Diquat, Cyromazine, Amitrole, Streptomycin	Column with Zwitterionic sites

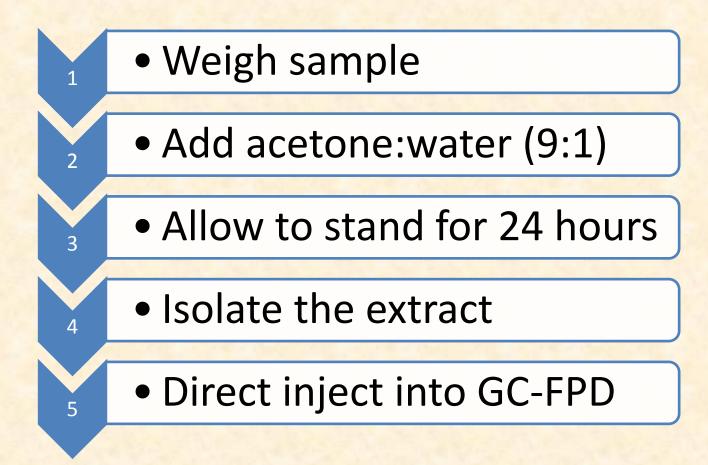
Fumigants

Fumigants Class	Residue definition
Carbon disulfide (CS ₂)	Carbon disulfide
Methyl bromide	Methyl bromide
Propylene oxide	Propylene oxide (Cacao beans); Either as propylene oxide or propylene chlorohydrin (Fig)

Carbon Disulfide

- Boiling point: 46.3°C
- Extraction with aqueous acetone 5:1

or


Extraction with aqueous acetone 9:1 followed by GC-FPD

or

Purge and Trap GC with Hall electrolytic conductivity detector

Carbon Disulfide

Methyl Bromide

- Boiling point: 4°C
- Extraction with aqueous acetone 5:1
- or
- Extraction with aqueous acetone 9:1 followed by HS-GC-ECD
- or
- Blend the sample and analyse the headspace gas inside the blender by GC-ECD

Methyl Bromide

2

3

4

5

• Add acetone:water (9:1)

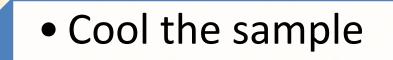
• Allow to stand for 24 hours

• Isolate the organic extract

• Transfer extract to headspace bottle

• Headspace GC-ECD analysis

Single-Residue Methods in Pesticide Residues Analysis


Propylene Oxide

Boiling point: 34°C

Blend the sample with liquid nitrogen and analyse the sample by HS-GC-FID

Propylene Oxide

• Cryogenic mill the sample

Weight into headspace vial

• Seal the vial immediately

Headspace GC-FID analysis

2

3

4

5

Propylene Chlorohydrins

Similar sample preparation for propylene oxide can apply to 1-chloro-2-propylene and 2-chloro-1propylene.

Detection of by propylene chlorohydrins by HS-GC-ELCD (electrolytic conductivity detector)

Fumigants

Fumigants Class	Residue Definition
Hydrogen phosphide (PH ₃)	All phosphides, expressed as hydrogen phosphide .
Dithiocarbamates (NR ₂ -CS ₂ ⁻)	Sum of all dithiocarbamates, determined as CS₂ evolved during acid digestion , expressed as mg CS ₂ /kg
Bromide ion	Bromide ion from all sources but not including covalently bound bromine .

Hydrogen Phosphide

Can be in the form of zinc phosphide or aluminium phosphide

Convert to hydrogen phosphide under acidic condition

Headspace GC-FID analysis

Hydrogen Phosphide

- Weigh the sample into headspace vial
- Seal the vial

2

3

4

5

6

- Add via syringe conc. HCl
- Shake well and turn upside down the vial
- Allow the vial to stand 30min at room temp
- Inject the headspace into the chromatograph

Dithiocarbamates

"Determined as CS₂ evolved during acid digestion"

In the presence of Tin(II) chloride and Hydrochloric acid, formation of CS₂
 Then,
 → GC analysis
 or
 → Formation of Cu:CS₂ complex, analyse by spectrophotometry

Dithiocarbamates

Weigh sample

Add isooctane

3

5

6

- Add tin(II) chloride in HCl
- Shaking water bath, 80°C, 2h
- Cool the extract
- Fill the extract into vial
- GC-ECD analysis

Bromide ion

Methyl bromide may degrade to inorganic bromide

❖ Ring opening of epoxide by bromide ion under acidic condition
 → suitable for LC / GC analysis

Epoxide = ethylene oxide or propylene oxide

Bromide ion

- Cut the sample into small size
- Put into freezer overnight (-18 °C)
- Mill the sample with coolant
- Weigh 5 grams sample and 3 mL water
- Add 5mL propylene oxide and 1mL H₂SO₄
- Add 4g NH₄SO₄, extract by EtOAc
- Organic layer for GC-ECD analysis

5

6

Single Analyte Test Methods

Polar pesticides

Fumigants

Acidic pesticides

Definition involving detection of moieties or conjugates

Acidic Pesticides

2,4-D	2,4-DB	Bentazone	Bromoxynil	Dicamba
		H O S=O N N	HO Br	
Fluroxypyr	Imazethapyr	МСРА	Picloram	Triclopyr
		HO O CI		

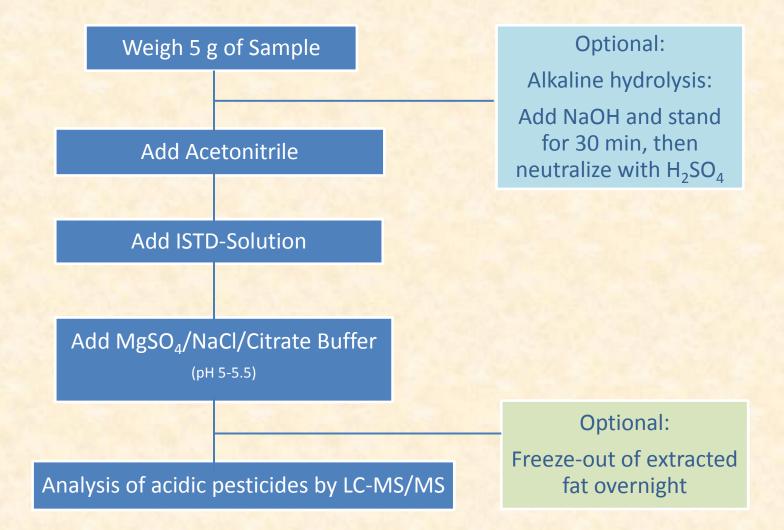
Single-Residue Methods in Pesticide Residues Analysis

Pesticide Name	Residue Definition
2,4-D	2,4-D
2,4-DB	Combined residues of 4- (2,4-dichlorophenoxy) butyric acid and its metabolite 2,4- dichlorophenoxyacetic acid
Bentazone	Bentazone
Bromoxynil	Bromoxynil
Dicamba	Combined residues of dicamba and its metabolite 3,6- dichloro-2-hydroxybenzoic acid
Fluroxypyr	Fluroxypyr
Imazethapyr	Imazethapyr
МСРА	2-methyl-4-chlorophenoxyacetic acid (MCPA)
Picloram	Picloram
Triclopyr	Triclopyr

Acidic pesticides – Cleanup issue

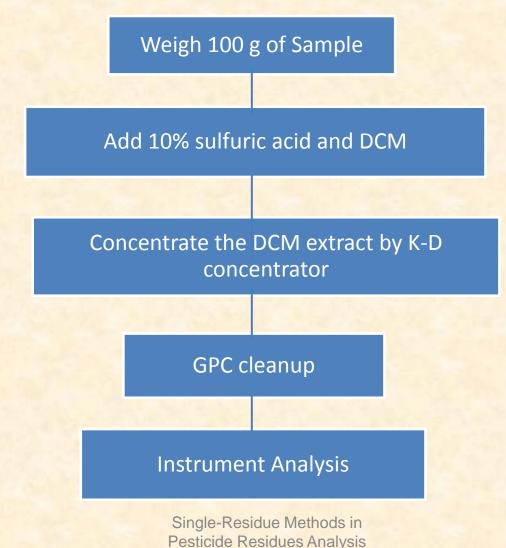
Acidic compounds interact with PSA sorbent

Losses of acidic compounds after cleanup

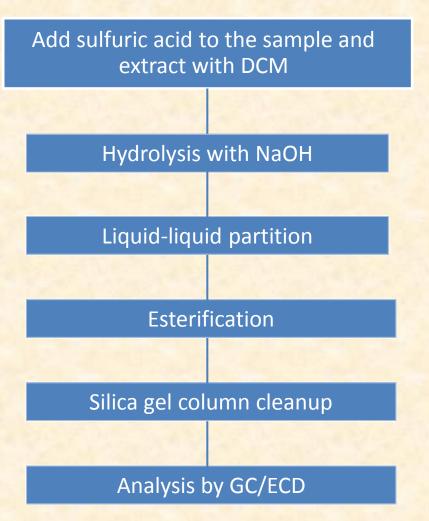

→ Skip PSA cleanup

Acidic pesticides – pH issue

 ◆ Ionization of pesticides at low or high pH-values Acids: HX ⇐ H⁺+ X⁻ Bases: B+H⁺ ⇐ BH⁺
 → Ionic form prefers to stay in the water phase


• pH-range of agriculture samples is $\sim 2.5-7$

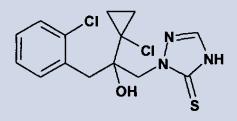
QuEChERS modification for acidic pesticides



Alternative methods

Residues are extracted from fruits and vegetables with DCM after acidification

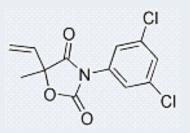
Traditional method involve derivatization to trichloroethyl esters


9 June 2011

Pesticides with Definition involving Moiety

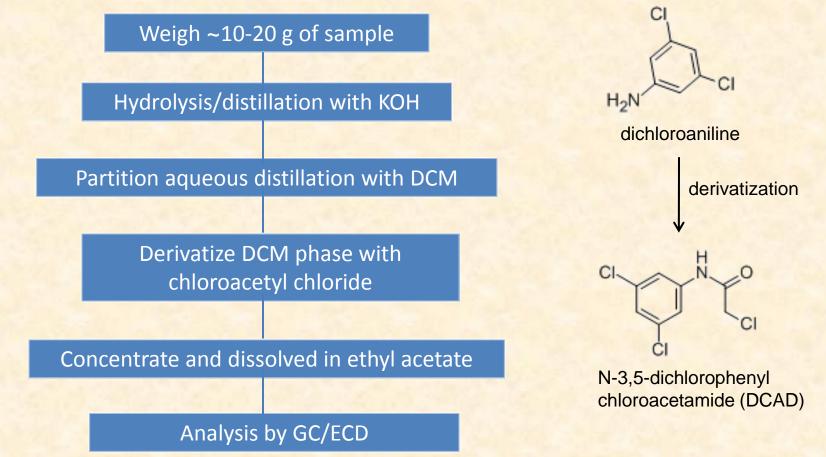
Examples of pesticides involving moiety:

Pesticide Name


Prothioconazole

MRL Definition

Combined residue of prothioconazole and prothioconazole-desthio, and conjugates that can be converted to these two compounds by acid hydrolysis, calculated as prothioconazole

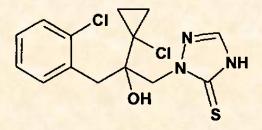

Vinclozolin

Sum of vinclozolin and all metabolites containing the 3,5-dichloroaniline moiety, expressed as vinclozolin

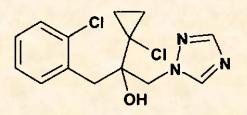
Determination of Vinclozolin

Parent and metabolite compounds are converted to dichloroaniline by alkaline hydrolysis and then derivatized to N-3,5-dichlorophenyl chloroacetamide

Calculation

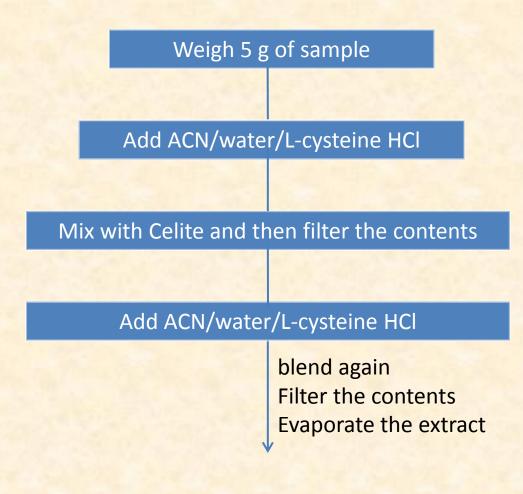

Vinclozolin concentration = C x Cf x Df/Sw

where C = Concentration of DCAD in the sample
Cf = Molecular weight (MW) conversion factor
 = MW of Vinclozolin (286)/ MW of DCAD (238)
 = 1.20
Df = Dilution factor
Sw = Sample weight

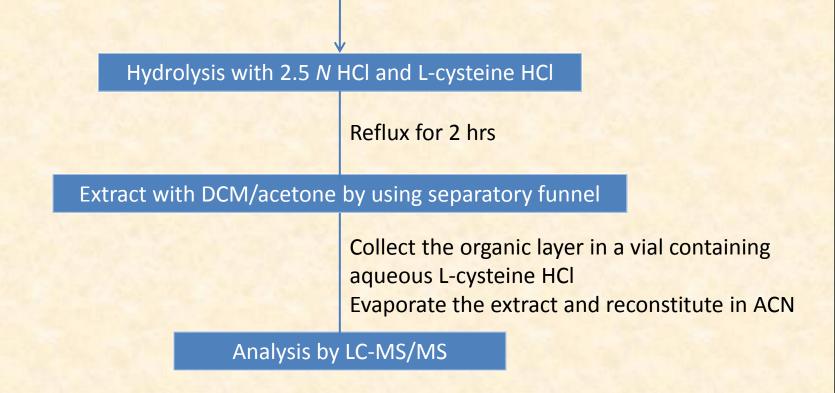

Determination of Prothioconazole and Desthio-Prothioconazole

Definition: Combined residue of prothioconazole and prothioconazole-desthio, and conjugates that can be converted to these two compounds by acid hydrolysis, calculated as prothioconazole

Extraction procedure involves acid hydrolysis



Prothioconazole



Desthio-prothioconazole

Determination of Prothioconazole and Desthio-Prothioconazole

Determination of Prothioconazole and Desthio-Prothioconazole (cont'd)

Method References

❖ German - Federal Institute for Risk assessment (BfR)
 ➔ § 35 LMBG official analytical methods: L 00.00 15 / L 00.00 16

- available freely from BfR website

"Manual of Pesticide Residue Analysis Volume I and II" – available as hardcopy

◆ USFDA / EPA : → "Pesticide Analytical Manual (PAM)" Volume I and II → "Residue Analytical Methods (RAM)"

Method References

 Joint FAO/IAEA:
 Food Contamination and Residue Information System (INFOCRIS)

EURL (EU Reference Laboratories):
 EURL-SRM: single residue methods provided by EURL

AOAC – "Official Methods of Analysis"

Standard methods ISO, EN, GB etc...

Thank You!

